ADVANCED ENERGY

In response to energy conservation demands, energy conservation is a system has for some time been implemented in homes, as well as industrial and commercial sectors. Energy consumption adversely affects the economy on all levels; high energy costs are an impediment to economic development for any country. A determined effort needs are taken by both private individuals & large businesses alike to reduce their input of “energy” into our global ecosystem – which includes many aspects including economic output (gross domestic product). 

To meet the ever-growing energy needs of an increasingly industrializing population, huge capital investments are required. Determining ways to reduce our consumption is key in reducing operational costs and improving not only productivity but also the quality of life for all who inhabit this planet that we call Earth.

Boron has a role to play in multiple aspects of energy management. For instance, the use of boron can provide several benefits for buildings. Boron-based coatings, for example, are highly effective in reducing both heat and cooling costs. These coatings are also resistant to corrosion and produce less CO2 emissions than other types of paints.

ENERGY MANAGEMENT

Permanent Magnets Boron

ENERGY MANAGEMENT SYSTEMS

Boron - Energy

CLEAN FUELS

Boron and Battery production

EFFICIENT POWER SOURCES

Boron - Clean Tech
Boron and SOP
ADVANCED ENERGY, Efficient Power Sources, SCIENCE

Boron and SOP

Boron inclusive technology is an excellent example of how we can harness the power from seawater to bring zero-carbon energy worldwide. Decarbonization has been a goal for quite some time, and it seems like this year, governments will finally agree on stricter regulations that would make it possible to achieve this objective by 2050 or sooner if possible.  Boron has been working to bring sustainable energy sources for all, and Boron and Hydropower technology is an excellent example of achieving this goal.

apple
ADVANCED ENERGY, INDUSTRY SECTORS

Boron and U.S. Rare Earths

The U.S. is boosting the stockpile of its rare earth minerals such as cobalt and lithium. Why? Partly to reduce dependence on China and partly to have a strategic policy towards rare earth sourcing and distribution. Rare earths are valuable resources used in E.V. batteries and decarbonization. What is the stance on boron and U.S. rare earths as a critical mineral?

Boron Hydropower
ADVANCED ENERGY, Efficient Power Sources, SCIENCE

Boron and Hydropower

Boron inclusive technology shows how we can harness the power from seawater to bring zero-carbon energy worldwide. Decarbonization has been a goal for quite some time, and it seems like this year, governments will finally agree on stricter regulations that would make it possible to achieve this objective by 2050 or sooner.  Boron has been working to bring sustainable energy sources for all, and Boron and Hydropower technology is an excellent example of achieving this goal.

Boron in traction motors
ADVANCED ENERGY, Batteries and Capacitors, Energy Management Systems

Boron in Traction Motors

Boron in traction motors – Smarter, better, cheaper, faster — those words are the mantra of today’s global economy. As organizations seek to streamline operations and do more with less, they increasingly focus on advanced logistics vehicles and mobile robots to help get the job done. From smart warehousing in retail to materials handling in manufacturing to telepresence robots in healthcare, robotic vehicles constitute a fast-growing technology sector.

Boron and EV Batteries
Batteries and Capacitors, Company Profiles, RESEARCH

Company Profile of Li-S Energy Limited – Boron Battery

Li-S Energy Limited, established in 2019, is an Australian company, a joint venture between Li-S Energy's founding shareholders, PPK Group, BNNT Technology, and Deakin University. Its purpose is to develop a new battery technology that incorporates Boron Nitride Nanotubes, which are more efficient, lower cost, and greener than current batteries for markets including automotive, defense and aviation.

Nissan Advanced Energy
ADVANCED ENERGY, Batteries and Capacitors

Advanced Energy – Nissan EV Battery Move

Nissan is currently the only automaker with a complete lineup of electric vehicles, including full-electric cars, plug-in hybrids, and zero-emission light commercial vehicles. The company’s goal is to be an industry leader in advanced energy and zero-emission mobility by 2030. As a leader in developing new battery technologies to improve efficiency and power for their lineup of vehicles, use of rare earth metals and near rare earth metals such as boron and lithium is at the heart of the battery power program. But batteries have a limited lifespan. Once it comes to recycling, there is too much waste. Nissan is tackling this problem with Waseda University to produce breakthrough innovations in Electric Vehicles technology.

Renewable Energies and Boron
ADVANCED ENERGY

U.S. Renewable Energies Strategy to Benefit Boron and Lithium

U.S. Government Doubles Down on Renewable Energies Strategy to Secure Boron, Lithium MetalThe U.S. Government continues to assure mining producers that it is determined to secure strategic minerals such as Boron and Lithium for EV production and other advanced energy needs as these sectors are poised to grow significantly in the coming decade. The Biden administration is looking even more closely at approving domestic sources of electric battery vehicle metals such as boron and lithium.

Boron Nitride Nanotubes
RESEARCH, Superconductors

Boron Nitride Nanotubes

Boron nitride nanotubes are a new material that has been studied for use in strengthening lightweight materials, such as plastics and polymers. It is also being researched for use in electronics, aerospace engineering, and medicine. The Boron Nitride Nanotubes market has grown steadily over the past few years.

Boron Carbon Capture Research
ADVANCED ENERGY

Boron Carbon Capture Research

Boron Carbon Capture Research: Carbon capture is a way to reduce carbon emissions and could play a key role in combating global warming. Pre- and post-combustion carbon capture is possible. Boron's properties as a solid absorbent allow carbon dioxide to be captured more efficiently in the first stage of the capture process.

Advanced Materials
ADVANCED ENERGY

Boron Advanced Materials

Boron advanced materials have unique characteristics which make them extremely useful in multiple applications. Boron's many forms include Boron Nitride, a superior heat conductor and insulator, hexagonal boron nitride tubes, a structure with superior tensile strength, stability, and thermal conductivity, and cubic boron nitride, whose hardness characteristics is used for coating cutting tools and as grit for polishing and grinding wheels.

Boron Nitride Nanotubes
ADVANCED ENERGY, MINING, PODCASTS

Podcast – Novel Applications in BNNTs

Today, we're going to look at novel applications using boron nitride nanotubes. Boron nitride nanotubes, or BNNTs, are mechanically and structurally identical to carbon nanotubes. BNNTs, however, have unique properties that are electrically insulating as well as transparent because of the polarized boron nitride bond.

Sodium and Boron Batteries
ADVANCED ENERGY, Batteries and Capacitors

Boron in Green Sodium Batteries

Boron inclusive technology shows how we can harness the power from seawater to bring zero-carbon energy worldwide. Decarbonization has been a goal for quite some time, and it seems like this year, governments will finally agree on stricter regulations that would make it possible to achieve this objective by 2050 or sooner.  Boron has been working to bring sustainable energy sources for all, and Boron and Hydropower technology is an excellent example of achieving this goal.

boron solar energy
ADVANCED ENERGY

Boron and Solar Energy

Boron For Storage In Solar Energy
As our population and cities grow, so does our need for safe, sustainable energy. To meet global needs, we must increase the efficiency of our energy consumption and optimize the capacity of existing and emerging energy sources.
Solar and wind energy depend on strong, durable materials. Borax products help to enable these technologies—and we strive to make our operations sustainable, too.

Boron Magnets
ADVANCED ENERGY

Boron Magnets to Drive Powertrains

Boron is a key component for making permanent magnets. It creates stronger magnetic fields than other types of materials. Permanent magnets use boron to create the necessary poles that can be magnetized and demagnetized over and over again.

Boron Microelectronics
ADVANCED ENERGY, Batteries and Capacitors, Energy Management

Boron and Micro-Supercapacitors

Boron nitride (BN) has shown great potential for microelectronics in the architecture of micro-supercapacitors. Boron Nitride has a large bandgap (5.5eV), superior thermal stability, and high thermal conductance. Boron Micro-supercapacitors in the laboratory exhibit high energy density. They can also withstand harsh environments such as high temperature or electromagnetic interference much better than silicon-based micro capacitors. 

boron thermal conductivity
Energy Management, RESEARCH

Boron Nitride Powers Thermal Conductivity

Boron nitride, also known as "white graphite," is a semiconductor material that conducts electricity. It is chemically inert and electrically insulating with no bandgap in the bulk phase that would allow it to emit light when excited by an energy source. Because of its excellent thermal conductivity properties, layers of boron nitride are often added onto other materials like silicon carbide (SiC) for use in high-efficiency power devices like thermoelectric cooler packages (TECs).

Boron and Chernobyl
ADVANCED ENERGY, Nuclear Energy

Boron and Chernobyl

Boron (B₁₀), which comprises about 20% of elemental boron, is one of the best neutron absorbers. It is dissolved in the cooling water of power plants to control the chain reaction, to absorb enough neutrons to remove excess reactivity in PWR plants. In both BWRs and PWRs, it is used in control rods to control reactivity and change the power shape of the core.

Tensile strength
ADVANCED ENERGY

Boron Rewrites the Rules for the Automotive Industry

With electric vehicles becoming more popular, new material is needed for battery electrodes that can accommodate these changes. Boron is an excellent candidate because of its ability to efficiently transmit electrons while also being lightweight and inexpensive. It's not just used in batteries; it's also used as a coolant for engines and brakes, as well as a strengthening agent for steel alloys. 

Boron advanced energy Origins of Boron
Clean Fuels, DECARBONIZATION

Deloitte Clean Tech Index

The Deloitte Australia Clean Tech (DACT) index is a global comparative ranking of companies. They rank organizations by recognizing their innovative and sustainable approach to business. Clean Tech stocks listed in Australia and was launched in 2008.

Boron Powers Space Exploration
ADVANCED ENERGY

Ammonia Borane Powers Space Exploration

Ammonia Borane is an excellent choice for rocket fuel given its ease of manufacture, availability, and low storage costs. It is also a good additive for jet fuel. Scientists at the University of California Riverside are testing ammonia borane, NH3BH3, as an alternative to traditional carbon-based chemical rocket fuels. This could lead to carbon-free space launches.

Boron and EV Batteries
Batteries and Capacitors, Company Profiles, RESEARCH

Company Profile of Li-S Energy Limited – Boron Battery

Li-S Energy Limited, established in 2019, is an Australian company, a joint venture between Li-S Energy's founding shareholders, PPK Group, BNNT Technology, and Deakin University. Its purpose is to develop a new battery technology that incorporates Boron Nitride Nanotubes, which are more efficient, lower cost, and greener than current batteries for markets including automotive, defense and aviation.

Boron Carbon Capture Research
ADVANCED ENERGY

Boron Carbon Capture Research

Boron Carbon Capture Research: Carbon capture is a way to reduce carbon emissions and could play a key role in combating global warming. Pre- and post-combustion carbon capture is possible. Boron's properties as a solid absorbent allow carbon dioxide to be captured more efficiently in the first stage of the capture process.